Lighting, Viewing, and
Metamerism
Background
Metamerism. It might
sound like a word that can only be understood by techno geeks, but it
affects nearly everything you print. Have you ever noticed that
the colors in your printed photos look good under daylight from a window
but those colors change under fluorescent or incandescent lighting?
Blue skies may turn purple under certain lighting, skin tones may look
more yellow/orange, and grays may take on a color cast. B/W prints
often suffer from metamerism more than color prints and they can look
neutral under some lighting only to take on a red or green color cast as
you move the prints around your office or home. Metamerism is
often an issue when buying carpet, trying to match clothing color,
drapes, and other items. Colors may appear to match nicely in the
store but when you get home, the colors look completely different in the
lighting in your house. This is metamerism in action. In
this article we'll take a look at metamerism, what causes it, and look
at our options for controlling it.
Understanding how we perceive colors
The first thing we need to
understand is how people perceive color. Our eyes, like most
photographic equipment, see color by using three primary color
receptors: red, green, and blue. By "sampling" the amount of red,
green, and blue light present, our eyes can determine the color of an
object. Equal amounts of red and green let us perceive the color
yellow. Equal amounts of red and blue allow us to perceive
magenta. By varying the amounts of red, green, and blue light, we
can see any color in the visible spectrum. Image capture devices
(cameras, scanners) record RGB intensities similar to the way our eyes
record them and we use output devices (monitors, printers) to put these
primaries back together so that our eyes see the same RGB intensities
that were present in the original scene. While printers use
different primaries (a form of cyan, magenta, and yellow) the end result
is the same: the devices try to put the data back together so that the
red, green, and blue sensors in our eyes see the same intensities (or
very close) as those in the original image. Doing this "record and
playback" successfully gives you an accurate representation of color in
a printed (or displayed) photograph.
Primaries versus the color spectrum
It all sounds simple so
far. Unfortunately, while any color can be "simulated" by using
primaries like red, green, and blue, spectral distribution is also
important. Think about a rainbow. In every rainbow, we can
see all the visible colors from red, orange, yellow, green, blue,
indigo, and violet and all colors in between. As the wavelength of
the light changes from red to violet through the range of colors in the
rainbow, the wavelength of light changes from say 700 nm (red) to 400 nm
(violet). If we had a light bulb that could reproduce any
wavelength we desire by just turning a knob, we could turn the knob to
about 580 nm and we would see yellow. If we look at the spectral
distribution of color for this light, we'd see a single spike of color
at the 580 mark on the rainbow-colored graph. The graph would show
the rainbow of colors from violet to red across the bottom with a single
vertical spike in the yellow location.
Now instead of a single
yellow bulb, consider two bulbs: a red bulb and a green bulb. The
red and green bulbs will produce two spikes on the spectral distribution
graph: a spike at red and a spike at green. The graphs look
completely different, but if we set the intensities just right and mix
the red/blue light together, our eyes will perceive the two colors as
the same because both "excite" the red and green cones in our eyes to
the same degree. So we can arrive at the same perceived color with
very different lighting. At this point, you might be tempted to
say "who cares", but this is the first step to understanding metamerism.
How lighting affects prints
We all know that different lighting can affect
the way you perceive color. People are starting to buy bulbs that
are advertised as more "natural" to improve the appearance of people (or
other objects) in the home. What makes different bulbs and
different lighting technology more desirable? First we have to
consider the light spectrum from above. Lets start with the sun.
Sunlight or "daylight" is considered full spectrum. Full spectrum
simply means that you have a relatively even distribution of every color
in the spectrum from violet through red. If you look at the
spectral distribution of sunlight, you'd see a relatively straight line
across the graph indicating that every color from violet, blue, cyan,
green, yellow, orange, red are all present at nearly the same intensity.
This is the very definition of "white": the presence of all colors at
once.
In contrast to daylight,
most man-made lighting such as fluorescent and incandescent lighting has
a very "spiky" distribution of wavelengths. Our eyes may be able
to adjust to any of these light sources, but each color in the spectrum
may not be represented equally.
Here
is a page showing the spectral distribution of different light sources.
As you can see, fluorescent lighting has a large green component but is
deficient in red. This can make fluorescent lighting look a bit
green. Conversely, incandescent lighting has a larger red
component and is deficient in green and blue, making objects (or the
light itself) look orange.
When we print photos, our
printers distribute ink/dye with the assumption that we have full
spectrum lighting as our viewing source. We really have to assume
full spectrum lighting because there is so much variation in lighting of
even the same type (incandescent, fluorescent) that to do otherwise
would only make the problem worse. Because our printers reproduce
color using primaries like cyan, magenta, and yellow, uneven
distribution of light from a non full spectrum light source can shift
colors due to the way the "spikes" created by our printer's cyan,
magenta, and yellow inks happen to align with the spikes in our light
source. If our light source has a "valley" in the spectrum in the
blue area and a "peak" in the red area, this might have the affect of
enhancing the yellow ink while subduing the cyan ink. Move to a
different light source, and the opposite may be true, forcing the
perceived color to change. It's sort of like watching a runner who
is pacing at a steady rate. As long as the runner keeps pace, it
doesn't matter whether the ground between his steps is
solid or he is running on the tops of well placed poles because he
doesn't use the ground that he isn't stepping on. Place poles
where he is stepping and he'll do fine. As soon as he changes his
pace, however, and his stride no longer matches the placement of the
poles, he falls. Same idea with matching your lighting with the
color distribution of your inks.
So how do we deal with metamerism?
We have to consider the
spectral distribution of light plus the spectral distribution of our
inks to understand and control metamerism. Sound complicated?
You bet! So complicated in fact that there really is no simple
answer. Even if you use ICC profiles to get the best color for
your printed photos, almost all ICC profiles are designed to produce
accurate color under full spectrum lighting (D50). View your
prints under most indoor lighting, and your results may vary. Some
printers have inks that are more or less prone to metamerism, and some
individual inks can cause more of a problem than others. For
example, the yellow ink in some printers has been found to be a major
contributor to metamerism, so some specialized (mostly B/W related)
software is designed to try to use less yellow ink so that your prints
don't shift color as much from room to room. It really is a
complicated issue, but there are things that you can do to take control
of metamerism.
The best (and relatively
inexpensive) way to deal with metamerism in a controlled environment is
to buy better lighting. While
Solux
bulbs probably produce the best metamerism-free lighting, there are
other options available that do a relatively good job. For
example, most home and garden centers now carry "daylight" or "natural"
fluorescent bulbs for your home or office. They are more expensive
than regular office fluorescents but you can still probably replace all
of the 48 inch fluorescent bulbs in a small office for less than the
cost of a few packs of photo paper! Most of these bulbs are
labeled with a CRI (Color Rendering Index). The closer the number
to 100 (perfect daylight), the better. A CRI of 90 would be
considered good, 95-98 very good, and anything above 98 exceptional.
Not only will these bulbs help prevent color surprises in your prints,
they also brighten the room and often give more of a revived feeling to
the surroundings.
If you are printing B/W
photos, you may want to invest in specialized software that produces B/W
prints that are less prone to metamerism. Most inkjet printers do
not just use black ink to produce B/W prints: they still use a mix of
black plus some of the color inks. To understand why printers
still need to place color ink on the paper when printing B/W photos is
another article in itself, but most print drivers don't offer a "black
ink only" option. To make matters worse, most black inks aren't
truly neutral anyway! Our eyes can be more sensitive to color
casts in B/W prints because we are very sensitive to slight color casts
when we know the entire photo should be neutral. If you find that
your B/W prints shift color when moving to different lighting, you might
want to consider a RIP (Raster Image Processor) designed for your
printer such as
QuadTone RIP.
In most cases though, an accurate ICC profile for your printer will do a
decent job.
Also be aware that
different printing technologies suffer from metamerism to different
degrees. Pigment based printers usually suffer from metamerism
more than dye based printers, however, the latest pigment based printers
have far fewer problems than the earlier models such as the Epson 2000P
and 2200 which are known to produce prints more prone to metamerism.
Summary
Most people will probably
go through life unaware of the issue of metamerism and to be honest, the
problem is rarely so severe that people complain about it. For
those who are concerned with color accuracy and producing the best
photos, however, there may be some situations where colors are difficult
to match and knowing that metamerism can be an issue can at least allow
you to deal with the problem. As a general rule of thumb,
metamerism is most evident in printed photos, so if you are having
trouble with color matching in your printed photos, always take the
photo to a window or take it outside to see if the problem persists
under full spectrum lighting. You might just be dealing with a
particular color that is affected by metamerism. It can be a
tedious and losing battle to try to tweak colors under difficult
lighting, so it's always a good idea to try daylight when dealing with
color issues in printed photos just to identify where the problem is
coming from. This might not make the fix any easier if you
must deal with difficult lighting or your photos must be
displayed under that lighting, but at least if we can see and identify
our enemy, we have more options in how to deal with it.
Mike Chaney